[Taiwan]

The Health Database in an Information Society*

Yu-Chuan (Jack) LI1

Besides paperless-ness and efficiency, the most valuable application of accumulated, aggregated Electronic Health Record data may well be their use to improve quality and patient safety. This talk describes a Data Interaction Model (DIM) and a Probabilistic Association Model (PAM) that would allow healthcare professionals a new perspective to look at their own Big Data, while also provides an architecture to fully take advantage of the data in hands to continuously improve healthcare quality and patient safety.

*1 This article is base on a presentation made at the Symposium "Health Database in an Information Society" held at the 29th CMAAO General Assembly and 50th Council Meeting, Manila, the Philippines, on September 24-26, 2014.

¹ Professor in Biomedical Informatics, Dean, College of Medical Science and Technology Taipei Medical University, Taipei, Taiwan. (intl@tma.tw).

Why EHR?

- Paper-less?
- Easier to read?
- Automatic translation? (e.g. different languages, pro terms → layman's language)
- Speedy access
- Concurrent access
- Provide (big) data to Improve quality and safety! (thru decision support systems)

Defining Big Data

Big Data is a collection of data sets so large and complex that it becomes difficult to process using on-hand database management tools or traditional data processing applications.

tp://en.wikipedia.org/wiki/Big_da


Elements of "Big Data"

- The degree of <u>complexity</u> within the data set
- The amount of value that can be derived from <u>innovative</u> vs. traditional analysis techniques
- The use of <u>longitudinal</u> (time-series) information supplements the analysis

http://mike2.openmethodology.org/wiki/Big_Data_Defit

Challenges Biomedical BD

- Locating/accessing data and software tools
- Standardizing data and metadata
- Extending policies for sharing BD
- Organizing, managing, and processing
- Developing new methods for analyzing & integrating BD
- Training researchers who can use BD effectively

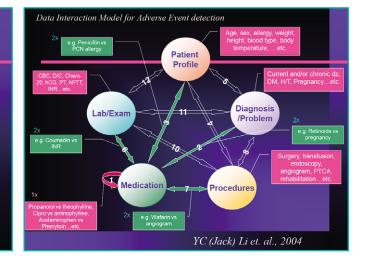
Current State of Healthcare

- Care is complex
- Care is uncoordinated
- Information is often not available to those who need it when they need it
- As a result patients often do not get care they need or do get care they don't need

IOM, Crossing the Quality Chasm, 2000

Poor Quality

45% did NOT receive recommended care


- Pneumonia → <u>61%</u>
 X
- ♦Asthma → 47% X
- •Hypertension $\rightarrow 35\%$

EHR Data to Improve QPS

McGlynn et al., New England Journal of Medicine, 2003

Data Interaction Model (DIM)

- Patient profile¹
- Lab and exam data²
- Medications³
- ♦ Procedures⁴
- Diagnoses and problem list⁵

One-way Interaction Examples

- Drug-Drug Interaction as example
- Redundant drugs
- Max daily dose (for children and adults)
- Unusual frequency
- Inconsistent route/dosage form
- High alert medication

Two-way Interaction Examples

- Drug vs Patient Profile
 - Age, Sex, Pregnancy restrictions
- Drug vs Diagnosis/History
 - Contraindications, inconsistent Dx-drug combination
 - Drug-allergy detection
- Drug vs Lab
 - Liver, kidney function restrictions
 - Therapeutic dosage
- Drug vs Procedures
- Blood-thinners with angiogram

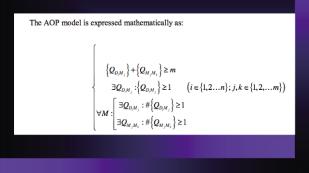
Results of the Anti-CIN Program								
	RISK	Baseline 12 months	Anti-CIN 12 months					
	A+ Cre>2	5.50%	3.48%					
	A Cre>1.4	14.00%	9.57%					
	C BDE	38.60% 47.40%	38.23% 52.20%					
	#Exam	3,624	5,318					
~	200	Cases	/ year	saved!				

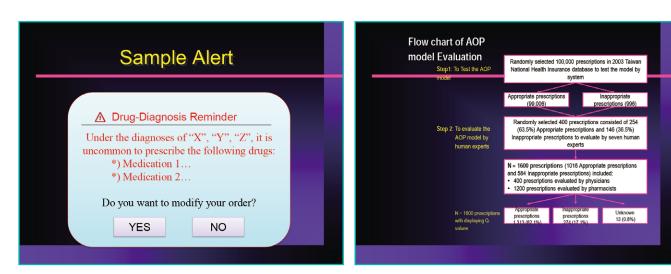
Data Interaction Models

- ♦ One way: 5
- Two way: 10
- Three way: 10
- ♦ Four way: 5
- Five way: 1
- Total: 31 combinations

Limitations on DIM (Drug vs Dx)

- Diagnosis
 - Diabetes Mellitus
- Medications
 - Euglucon (Glibenclamide) V (lower sugar)
 - Euclidan (Nicametate) X (vasodilator)
- Difficult for manually crafted rules
 - Too many combinations and exceptions

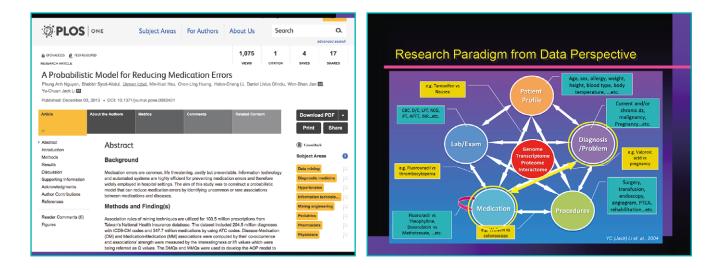

Probabilistic Association Model (PAM)


- Take any number of data elements from the DIM and compute their association strengths (Q)
- $\mathbf{A} = \mathbf{P}(\mathbf{A} \text{ and } \mathbf{B}) / \mathbf{P}(\mathbf{A}) \cdot \mathbf{P}(\mathbf{B})$
- Use the combinatorial Q among the data elements to determine the probability of the occurrence of a specific combination

PAM example on Drug-Dx Interaction

- Drug-Dx interaction in PAM
- ♦ Go through 103 million prescriptions (204m diagnoses in ICD-9CM and 347m drugs in ATC code) from Taiwan's National Health Insurance database
- Compute all the association strength
 (Q) between Dx/Drugs and Drug/Drug

AOP (Appropriateness of Prescription) determined by Q's


Results							
	With displaying DMQs, %						
Human experts	Sens	Spec	PPV	NPV			
Physicians	76.7	84.9	94.8	50.3			
Pharmacists	74.3	94.2	98.7	40.6			
Overall	75.5	89.5	96.7	45.5			
Abbreviation: Sens. sensitivity: Spec. specificity: PPV, positive predictive value:							

Abbreviation: Sens, sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive value

Note: Confldence intervals (CIs) were small for each parameter and are thus omitted from the reported results.

Results of PAM Evaluation

- 1,400 prescriptions evaluated by physicians and pharmacists
- ♦ 96% (975/1016) accuracy for appropriate prescriptions
- ♦ 45% (263/545) accuracy for inappropriate prescriptions
- With a sensitivity and specificity of 75.5% and 89.5%, respectively.

Conclusion

- With the Big Data approach, QPS can be improved several orders of magnitude
- One hospital captures 20,000 high risk events every year
- Moving from
 Detect → Predict → Prevent

Thank you for your attention

